Color Segmentation Using Self-Organizing Feature Maps (SOFMs) Defined Upon Color and Spatial Image Space
نویسندگان
چکیده
A novel approach to color image segmentation is proposed and formulated in this paper. Conventional color segmentation methods apply SOFMs – among other techniques – as a first stage clustering in hierarchical or hybrid schemes in order to achieve color reduction and enhance robustness against noise. 2-D SOFMs defined upon 3-D color space are usually employed to render the distribution of colors of an image without taking into consideration the spatial correlation of color vectors throughout various regions of the image. Clustering color vectors pertaining to segments of an image is carried out in a consequent stage via unsupervised or supervised learning. A SOFM defined upon the 2-D image plane, which is viewed as a spatial input space, as well as the output 3-D color space is proposed. Two different initialization schemes are performed, i.e. uniform distribution of the weights in 2-D input space in an ordered fashion so that information regarding local correlation of the color vectors is preserved and jointly uniform distribution of the weights in both 3-D color space and 2-D input space. A second stage of Density-Based Clustering of the nodes of the SOM (utilizing an ad hoc modification of the DBSCAN algorithm) is employed in order to facilitate the segmentation of the color image.
منابع مشابه
A Window-Based Self-Organizing Feature Map (SOFM) for Vector Filtering Segmentation of Color Medical Imagery
Color image processing systems are used for a variety of purposes including medical imaging. Basic image processing algorithms for enhancement, restoration, segmentation and classification are modified since color is represented as a vector instead of a scalar gray level variable. Color images are regarded as two-dimensional (2-D) vector fields defined on some color space (like for example the ...
متن کاملPerformance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation
Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...
متن کاملکاهش رنگ تصاویر با شبکههای عصبی خودسامانده چندمرحلهای و ویژگیهای افزونه
Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...
متن کاملSelf-organized Clustering of Mixture Models for Combined Color And Texture Segmentation
The segmentation of images based on color and texture cues is formulated as a clustering problem in the joint color and texture space. Small image patches are grouped together on the basis of local color and spatial frequency statistics which is captured by Gaussian mixture models in feature space. The locality of segments in feature space is taken into account by the topological organization o...
متن کاملA New Face Detection Technique using 2D DCT and Self Organizing Feature Map
This paper presents a new technique for detection of human faces within color images. The approach relies on image segmentation based on skin color, features extracted from the twodimensional discrete cosine transform (DCT), and self-organizing maps (SOM). After candidate skin regions are extracted, feature vectors are constructed using DCT coefficients computed from those regions. A supervised...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010